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ABSTRACT

A uniformly velid solution for the motion of a satellite around an oblate
planet is presented. The Two Variable Expansion Procedure as earlier
developed at Caltech was applied to obtain a solution valid for all
inclinations including the critical., This solution is correct to order €,
where € is a small parameter proportional to the oblateness parameter J2.
The reciprocal of the radius vector, ecdcentricity, perigee, inclination,
and node of the satellite orbit are given as functions of the central angle ¢
between node and satellite., The results are based on a potential which inaludes
the second and fourth zonal harmonics. The solution for the case of critical
inclination is first obtained separately and then matched with the soliution

of the noncritical case to establish a solution uniformly valid for alil

inclinations,
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l. Introduction

The motion of a satellite around an oblate planet has received considerable
attention in the literature after the advent of artificial satellites of the
earth. The early theories, of which Brouwer's (1959) is the most comprehensive,
were not valid for initial orbital inclinations close to the criticali value

cos '1(5)'1/2= 63.4° frow the equatorial plane of symmetry, The non-validity
of the solution at this angle exhibited itself by the occurrence of a divisor

which tended to zero at the critical inclination.

Later, Hori (1960) and others (cf. Garfinkel (1960), Mersman (1962), and Izsak
(1963) using diverse approaches, studied the behavior of the solution near the
critical inclination. Though "a direct analytic comparison of the various
treatments of the critical inclination problem is almost impossible because of
the multiplicity of notations, approximations and starting points" (Mersman

{1962), there is general agreement about the necessity of studying an expansion

/

in powers of Jl 2 (wvhere J is the small parameter measuring the oblateness
perturbations). Furthermore, at least the qualitative behavior of the motion
near the critical inclination, as first described by Hori, has been repeatedly'
substantiated, This statement by Mersman quite correctly reflects the inherent
algebraic complexity of the main problem and the necessarily involved nature

of its solution. However, the basic mathematical problem that gives rise to
the singularity at the critical inclination is quite simple and was recognized
by many authors. In particular, Struble (1961) has pointed out that for
inclinations close to the critical the equations governing the slow variations

of the apse and inclination angle are coupled by virtue of a regrouping of

terms which otherwise have different orders of magnitude.




This phenomenon can be duplicated exactly in a particularly simple model

equation corresponding to the forced oscillations of a system with an appropriate
small non-linearity. The connection between non-linear oscillations and satellite
motions with small pertunbations is, of course, well known since it was first
proposed by Laplace in his study of the motion of the moon. Therefore, in

order to fix ideas the proposed model equation is first studied in detail, and
the techniques are then directly applied to the main problem., The aim of the
present paper is to develop the solution both near and away from the critical
inclination in asymptotic series with respect to J. These series are uniformly
valid for long times, but the primary goal is the achievementiof uniform

validity for all inclination angles as well.

The approach adopted here proceeds from the formulation proposed by Struble
(1960) and (1961). It is first shown that two distinct asymptotic expansions
{corresponding to two regimes of the initial inclination near and away from

the critical) can be constructed and rendered uniformly valid for long times

by the two-variable expansion procedure of Kevorkian (1962). It is then
demonstrated that each of the above generalized asymptotic expansions, depending
upon the initial inclination, individually describe the motion for all times,

In addition, the two expansions match in an overlap domain of the inclination
parameter lying between the critical and non-critical regimes. This matching

is in the sense of the theory of Kaplun and Lagerstrom (1957), hence the

uniformly valid asymptotic representation of the motion follows easily.

Furthermore, the analytic dependence of the solution on Jl/2

, as first suggested
by Hori (1960), is Justified by the techniques of singular perturbation theory

and the matching process,




The present solution includes the second and fourth zonal harmonics of the
earth's potential, All secular and long-period terms are included up to
O(J5/2), while short-period terms are retained up to 0(J). The results are
exhibited in the form of the reciprocal redius, eccentricity, perigee,
inclination, and node as functions of the central angle between the ascending
node and radius vector. The equation for the time is not given here but will
be included in a future publication. A detailed comparison of the present

results with at least the work of Struble (1961) and (1962) will also be

provided there,




2, Model Equation

2.1 General Discussion

In order to demonstrate the essential mathematical features of the main problen

end the expansion procedures, the following model equation is first studied in

detail
(2.1) é—% +y + 2ey[l - 5c052 {y2 + (gx)Z}l/Z] = ¢° {y2 + (gx)2}l/2cos t
dt dt dat

where € << 1,

In the absence of the forcing function, this equation can be integrated exactly

and exhibits the following behavior in the phase-plane of y and dy/dt.

Whenever the radius r = [y2 + &?]1/2 in the phase-plane takes on the critical
values r, = cos-l(S)-l/2, the motion reduces to simple harmonic oscillations

with amplitude rcand unit frequency. For each annular region bounded b& two
consecutive values of rc, the integral curves are ovels with their axes aligned
alternately paralled either to y or to dy/dt. One would thus expect that the
addition of the forcing term vith unit frequency will cause local resonance in
neighborhoods of the critical amplitudes rc. As will be shown later on in this
section, this will indeed be the case and will give rise to the problem of the

"eritical amplitude",

Using the two-variable method discussed by Cole and Kevorkian (1962), (1963),

the following form of the asymptotic expansion is first assumed®

*  Throughout this paper the omission of the upper index on a summation symbol
will indicate an asymptotic expansion.




where the slow variable U is delined vy
(2.3) t = et

as discussea by Kevorkian (1962). Then the governing equation for y is
o

(2.4) 24y =0

whose general solution is

(2.5) yo(t.i;E) = a(t;e)cos(t - 8(t;5e)]

The functions a(f;e) and R(t;e) in (2.5) which will be called "integration
constents" will be determined by requiring Y, to be bounded. For the present
case we always have the simple harmonic operator on the left-hand side of alil
higher order equations. For simplicity of calculations and for the exélicit
representation of the motion of the phase angle, we will expand the "integration_

constants™ a(t;e) and 8(£;e) in the form:

(2.6) a(iie) = J o (B)e B(E5e) = [ g (R)e’
i= i=0

From (2.1) the following equation for Yy can be calculated:

32yl duo dBO o
(2.7) —5=+y, =2-—sin (t-8) - 2a°[——j + {1 - Scos ao)] cos {(t-3)
3t dt dt

The boundedness of yl requires

m
n

(2.8) — =0 —= -(1 - 5cos2ao)




These equations give
(2.,9) a = const, B =5t +0b

where bo is a constant depending on the initial condition. The solution for

yl is then
(2.10) yl(t,t;c) =0

with no loss of generality because the homogeneous solution is already accounted

for in the expansion of a and B8 in Yoh

2
Mow the equation of 0(e“) for Vs is

2

3y dal . 5 5
(2.11) — . y. = {2 — < a _sinB] sin (t-B) + a_ {s “ - £ a s sin 2a
3t2 2 e o o o 2 oo o
dt
dBl >
+ cos B+ 25 'a, = 2 —=] cos (t-8) =~ 24 %s sin 2a_ cos 3(t=p)
o 1 . 2 o o o
dt
where .
'dso
! = —memn = o i

{2.12) s, o 5 sin 2a
By the boundedness requirement on Y, we must set

da ao
{2.13a) —_—= -E'sin 8

dt

dBl so2 1

— TR cum— 4 = + 1)
(2.13v) - 5 E-aoso sin 2a_ + Z cos B + s 'a,

dat

. . _ -1 ~1/2 _ . .
Since for s_+ 0 (i.e. a = cos (s) ) B =1+ 0(e), we see immediately
o

from (2.13a) that a, becomes unbounded for large values of t. Thus, the
L
expansion procedure assumed in (2.2) is not uniformly valid near the critical

amplitudes.




In this simple model the cause of the difficulty is easy to discern anu remedy.

1(5)-*/2 the non-linear

As was pointed out earlier, whenever g = o, = cos
system degenerates to simple harmonic motion with a frequency equal to thnat

of the forcing function. Therefore, in some neighborhood of a, the amplitude
must increase appreciably before tne non=linear term comes into play and
destroys the resonance of the forcing function. Jue to this effect of local
resonance the forcing lunction, which would otnerwise be of order 52, now
takes on a more importan} role. ‘This fact is exnivited mathematically in
equations (2.8). WVhen s, is small one cannot negiect the higher order forcing
function in solving for Bo and ags since in this case the right-hana sides of
(2.8) are exclusively composed of small terms. This fact was first pointed

out by Struble (1961) in connection with the main problem.

In view of this, we anticipate the importance of the forcing functicn and

introduce it immediately in the equations of order ¢. This means esuations

(2.8) for a and B8 now become

(2.14) L. gin g 48 . -(1 - ScosZa) + < cos 8
- 2 - 2
dt dt

The terms of order € in (2.14), which are exclusively the contributions of the
right-hand side of (2.1), will radically alter the behavior of a and 3 near the

critical amplitudes.

Equations (2.14) are Hamiltonian, hence along an integral curve

(2.15) 2H = 3a + % sin 2a + eacosB = const.




With the aid of (2.15), the integral curves in the a, 3 plane can be easily

calculated. The singular points are located at 3 = Bs =nm, n=0,12 1,22, ¢:¢s

- 1 *
and cos a = cos a = +(1/5 + c/lO)'L/2 . These points form an alternating

pattern of centers and saddle-points with solution curves as shown qualitatively

in Figure 1.

We observe three possible types of motion if we consider the integral curves

/2

in vertical strips with a width of order ¢ centered about any of the critical

amplitudes. '

The integral curves which pass through two adjacent saddle-points for a given

value of . form tne boundaries of oval regions with a width also of O(el/g)

inside which both a and B undergo bounded oscillations. For example the

motion in the neighborhood of the point 8 = 0 and a = a = cos-l (1/5 - e:/lO)l/2

has the form

1/2
a * Cle cos [(2eas)

1/2

(2.16) a t + 02]

-1/2 1/2 P+

2

(2.17) -hCl(2us) sin [(2eas)

where Cl and C. are smell constants depending on initial conditions which

2

allow us to linearize equations (2.1h).

The separatrix forming the above boundary corresponds to motion where a and B8
approach the value at the saddle-point asymptotically as t + e, In fact, by

use of (2.15) it is easy to show that the separatrix around the point 8 = 0

* The upper or lower signs in the radical are to be taken when 8 is an even
or odd multiple of n respectively.
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and o = cos-l(l/S - 5/10)1/2

1/2 c -l( )-1/2

for 0 < a_ < /2, intersects the a axis at a

distance (e/2) os (5 + 0(e) from the singular point. Finally, the
motion just outside the oscillatory regions is characterized by the fact that
a undergoes bounded oscillations, while 8 has a secular motion superimrpcsed
on its oscillations, In all three of the above motions the characteristic
frequency is 0(53/2) in the naturasl time variable whereas the amplitudes of

1/2)

oscillation are 0(e (ef. equations (2.16) and {2.17)). This immediately

suggests that the slow time scale appropriate for motion near the critical

amplitudes is t = 53/2t, and that one must seek an expansion for y in powers

of 51/2.

As for the motion away from the critical amplitudes, we-note from (2.8) and
{2.13) that o oscillates with amplitude and frequency of order e, and that the

oscillatory as well as secular components of B bBehave similarly.

The above intuitive construction will next be analyzed systematically by the
use of two different expansions and their roles established in terms of all

possible initial conditions,

2.2 Outer expansion

In order to account for the most general form of initial conditions, we

represent the motion away from the critical amplitude by an expansion in powers

1/2

of € , called the outer expansion:

el = .y i/2
(2.18) Y(tye) = iZoyi/z(t,t,E)




As bvefore the leading term of (2.18) is

(2.19) yo(t,i;e) = a(t3e) cos [t - B(tse)]
where we set

(2200 albie) = [0 2oy sl - DEVCES

It is then easy to show that yl/2 =y = y3/2 = 0 after having defined the

1
“i/2’ 81/2 by the following boundedness requirements:

duo ag 2
(2.22) — = (2.23) —2 = (1 - 5cos a) = s

at at °

da [+¥:]
(2.2h) 12, (2.25) 12 . g 1y = -S(sin 20_)a
4t af o 1/2 °

a
(2.26) -Tl- =2 gin 8

s
B S - 1 ' " 2
(2.27) . =58 - E a8, sin 2a_ + 5cos B+ 5 'a, +—> /0

where

d2s
”

(] da 2
(o]

= =10 cos 2a°

Note that trigonometric functions with 8 as argument are not expanded to avoid
trivial non-uniformities as the expansion of 8 in (2.21) need not involve

bounded functions., It is only the phase velocity dg/dt that must be bounded.

1/2

1
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The solutions of the above equations are:

(2.28) @ = const, = a_ (2.29) Bo = sot + b0
and
= = = ' £
(2.30 a1 /0 const., 8 /2 (2.31) ?1/2 s, al/2t + bl/2
and
(2.32) = 2o 1/2 55'%1/2 55'31/2 ;
) %1 2s [1 - ¢ =12 4 o ) + ...j(cos B = cos b) + a
o s s 1
o o
and equation (2.27) reduces to
s 'a s 'a
ag . . 1 ] i/2 Yo "1/2
(2.33) i % s 2 . % a s, sin 2a + S cos 8 - —— [1l-¢ -
-~ o) o
dt
2 " 2

s 'a 3
+ 5(‘9—‘£Lg) + ...)(cos B - cos b) + s 'a, + —8— a
s . o)

o}

if the initial conditions are given

1/2
(2.34) : bo + € bl/2 +

(v~
1]
o
n

- - 1/2
a =a = ao + ¢ 31/2 +

at t = 0.

Equation (2,32) for ay exhibits the

would be identically

1/2
a term proportional to €1/2'

Note that a

as
b, + ...

€B. *+ 44

non-uniformity of the expansion near S, = 0,

zero if the initial amplitude did not contain




2.3 Inner expansion

As mentioned previously, the outer expansion fails to be valid as Sy~ 0.
We now seek a solution which is valid and does not becnme unbourded at the
critical amplitudes., This expansion will be called the "inner expansion".

We let (cf. discussion after Fig. 1)

. l/2 -
(2035) SO = € 50

and assume the following expansion for y

o) = * o=y i/2
(2.36) yitie) = 1Zoyi/2 (t,tie)e

where a new slow variable

(2.37) T=e2% =¢

*
has been chosen, The equation for Yo is again

(2.38) S+ y o

whose general solution can be written in the form:

*

(2.39) yo*(t,z;s) = a (tie) cos [t - B*(f;e)]

| e, L J—
We also expand the slowly varying functions a (t;e) and 8 (t;e) in the following

form in order to account for the homogeneous solutions of all higher orders.

(2.40) u*(zae) = ) hile*(Z)ei/e 8*(?;5) = 3 81/2*(€)ei/2
i=0 i=0

13



Substitution of the above expansions into (2.,1) and the requirement that the

*
yi/2 be bounded gives the following ordinary differential equations for the

* ™
@572 8nd By s s
d * das *
a »
(2.b1) 2 =0 —==s'a,
dt at
4 » *
a a "
(2.42a) 11? = —%— sin 8
dat
dB'/ * s " 2
1/2 _ » 5 *° 1 .
(2.42b) © s o, ¢+ -Er{ul/z ) + 5 cos 8
4 * »
a a .
(2.43a) i = 122 sin 8
dt
as,” . s ' «3 . .
e ' " * » o - -5- -_— R .
(2.430b) = s, a3/0 * s ayp 9 M- (31/2 ) 5 uo s, sin 2a°
with the additional results that
(2.4k) * * * *

Y172

=yl =t3/2 =y2 = Q.

*
and that only in yS/2 do we have higher harmonics in the fast variable.
[ ]

We note that equations (2,42) are precisely the equations one would obtain in

the inner limit f

*
for the a./

i/2
(2.45a) ao“ = const. = ao'
{2.L450) °1/2* = E; + ;lT [Eiz + Eé(cos 8" - cos b*)]l/2
o
(2.45¢) ul* = . %g [Eie + Ké(cos 8" - cos b“)]l/2 - (cos 8" - cos b“)/2so' +a "
2

rom (2.14), Equations.(2.41-2,43) can be solved successively

and the results are summarized below.

14
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where

(2.46) K =-3/s' K2 = (302 +5 'a

and the initial conditions at &t = 0
(2.47) a, =a
have been imposed.

» »
With the a so defined the solution for the Bi/ reduces to guadratures,

i/2 2
These details will not be carried out here as the qualitative behavior of both

a and B have already been discussed.

15



2.4 Matching of solutions and composite expansion

In the standard singular perturbation problem in which two limit process
expansions can be derived in their respective domains, either one or bvoth

of these expansions is defined incompletely prior to the matching (cf. Kaplun
and Lagerstrom (1957)). For example, the initial conditions for the inner
solution would depend upon the values taken on by the outer solution in the
inner region if the motion spans both regimes (cf. Lagerstrom and Kevorkian
{1963)). In this case, the matching will define the motion in the inner region
and the behavior of the two limit-process expansions in their common overlap
domain will provide the basis for deriving a composite expansion which is

uniformly valid everywhere.

In the present example, as well as in the main problem, the motion depending
upon the initial condition on a lies for all times in either the outer or

-

inner regions., Furthermore, the parameter whicﬁ establishes the appropriate
expansion does not vary in order of magnitude with time, The purpose of
matching is then two-fold. First, the direct matching of the two expansions
will prove the existence of a common overlap domain and rule out the possibility
of an even third limit-process expansion for some value of u such that

8, = O(eu), 1l <u < 1/2. Secondly, the matching will provide the necesgsary
information for obtaining a representation of the motion for all values of

so in the above order interval once the behaviors at the end-points of this
order interval have been calculated, General principles of matching are
discussed by Kaplun and Lagerstrom (1957). For the present examples, as well

as for the main problem, it is sufficient to show that the inner solution for

large values of ;; agrees with the inner limit of the outer expansion. 1In

17



this event the derivation of a composite expansion which is uniformly valid
1/2

for all 8, in the order interval ord ¢ < ord s, < ord 1 becomes particularly

straightforward.

»* *
The matching between a and o is very simple. If we rewrite a in terms of

outer variables and expand for ;; + o, we obtain

d * 1/2 * * 3/2 * 1/2 *
.he = =
(2.148) a ay *e ey, +ea 4 o(e”’ ) 8, +¢e %8, +ea
* L }
€ ( b*) + 1 3/2 (so' LA ) * ( * b*)
-3 so cos B« cos > € E:- uo -1 al/2 cos B = cos
2 s ' sy’ » » » ¢ ) 2 *
£ o o o
-5 (e, - 1) [5—-5-3.1/2 {(cos B -cosb)+-ﬂ-;—§(cosb
° o
1] » » /
-~ 2c088 cos b + %-+ %-cos 28 )] + 0(55’2)

From the outer expansion we have

- 1/2 3/2, _ 1/2
(2.49) a = ao + e 01/2 + eal + 0(e ) = ao + € 51/2 + eal
ca s 'a s ,2a 2
- 5;2 f1- 51/2 : 1/2 + e == 21/2 + «ss] (cos B = cos b) + O(eS/z)
o o s,

By comparing equations (2.48) and (2.49) we see that the inner expansion contains
the outer expansion explicitly to order ez. Note that in the overlap domain

*
we have ai/2 = ai/2 » In fact, all terms in the outer expansion to order 52
1/2

»
are contained in uo + ¢ a The outer expansion of a is entirely of

»
1/2 1

higher order. Thus, the composite expansion which is uniformly valid to 0(e)

everywhere is:

(2.50) a =a +¢'“a

18



*
In this matching, we have assumed that both 8 and 8 are matched, This wiil
be shown in the subsequent discussion. For simplicity, we will discuss the

. - *
matching between d8/dt and d8 /dt instead.

To summarize, we have already obtained

(2.51) Q% =5+ sl/2so'al/2 + c(% 502 - % a %5 sin 2a
dt
1 s, 2 3/2
—-— 1 —
+5cos B+ ?0 ay * 58y, ) + 0(e”°)
and
33" » 1/2 A * 1 xS # 2
@ -3 ' ' = S
{2.52) = S, *+ 8,0, *E [so a, +3cos B+ <°1/2 Y€1 + o(e)

* -
We note that the inner expansion of (2.52) for d8 /dt contains all the terms
that appear in the outer expansion (2.51) with the exception of the two terms
2

2 . 1 s s . .
- % eao s, 8in 200 and E-eso . This is consistent, because when the above
: .

terms are expressed in terms of the inner parameter Eg, they become of order
c3/2 and 62 respectively. Thus, they should appear in the expressions for

* - -
dsl /dt and d83/2/dt respectively. The first term does appear in the

» -
expression (2.43b) for dBl /dt and one would recover the second term if

* -
d83/2 /dt were evaluated,

Conversely, many terms in the inner expansion, e.g. so'ul* and so"(ul/z*)e/Z,
are of orders higher than ve considered in the outer expansion and will apr=zar
in the corresponding higher order terms. Having carried out the calculations
to the present order we can easily derive the following composite expansion

for dec/dF which is uniformly valid to order 2 for all 5,




4B ’ s 2

c = « 1/2. * 1 * 5 .

2. — + ' ' = — :

(2.53) = S * 55'91 /5 + ¢ (s, a, + 3 cos 8+ (01/2 )
»* 2— » 2 2

2 i £ 3
£ c(ao ) s, sin auo + 58,

In deriving (2.53) we have used the customary construction of adding the inner
nd outer representations for de/di and subtracting those terms which are
:smmon to both expansions in the intermediate region. These terms are the

two higher order terms appearing at the end of (2.53). Thus, to order

1 * -
€ /2 the inner expansion dB /dt is itself uniformly valid for all 8¢ It

is only in deriving an expression valid to orders higher than 51/2 that one

needs consideration of terms contributed by the outer expansion.

Finally, the solution of (2.1) for y which is uniformly valid to 0(e) for
all s_is
o

1/2 *

3/2
%y/2 )

(2.54) y(t,e) = (ao“ ‘e

* < /
+ eay ) cos [t - Gc(t;e)J + 0(e

1/2 . . .
/ ) was discussed earlier in

The behavior of the amplitude and phase to 0O(e
connection with {2.14)., The higher order terms will not alter the general
qualitative nature of the solution. The detailed and systematic development
of the ekpansions for o and B was carried out here to serve as a guideline for
the study of the main problem for which there is no a priori knowledge of the
particular higher order terms which cause local resonance. lence one must

rely on a more formal construction anelagous to the process used in sections

2.2'2.1‘-




3. The ilain Problem

Once a suitable choice of variables is made, the motion of a satellite around

an oblate planet reduces in principle to the solution of a problem in non-linear
oscillations anelogous to the model discussed in Section 2. Of course, instead
of the two siowly varying functions a and 8, we now have six slowly varying
orvital elements. However, it will be shown that the main problem hinges on
solving the coupled equa%ions for the inclination and apse which will be the
analogues of a and B, and that the remainder of the elements will then be

given by quadratures.

3.1 Formulation of the problem, coordinate system

Consider an inertial frame with origin at the center of an oblate planet
having a radius R in the equatorial plane of symmetry., We normalize distances
by the radius R and the time by (R3/GM)1/2, where G is the universal gravitational
constant and M is the mass of the planet. The dimensionless equation of motion
for a sateliite is then

2

(3.1) —5 = grad U
dt

<%
Xy

where ; is the dimensionless distance vector from the origin and the potential
U has the following form in spherical polar coordinates with respect to the

polar axis of symmetry:

2
(3.2) U=+ L£.(1-3cos?e) + 5= (35 cos®e - 30 cos2e + 3) + 0(e3)
r 3r3 5!‘5

where 0 is the polar angle.

21



It has been assumed that the planet is an ellipsoid of revolution and for

the earth the constants € and ¢ are approximately (cf, Jeffries (1959) and

Shi (1963))

€ =J = 1.623 x 10~

3 ¢ = /T

In the conventional spherical polar coordinates:

(3.3a)
(3.30)
(3.3c)
where

(3.34)

X

Y

2

-+
X

r cos ¢ sin ©
r sin ¢ sin @

r cos 6

(x,y,2), I;I =r

Equation (3.1) for any potential U has the following component form:

(3.ka)

(3.4b)

(301‘0)

d_,.2 .2 dy, _ 3U
T (r° sin®® dt) v
d 2 ds8 2 ' dy 2
Ty (r EZQ - r© sin & cosé@ (dt) = ==

&
dt2

r

2 2 -
as 26 (4y)% . au
-r (dt) - r sin“e (dt) e

Since the satellite can be considered to move in an instantaneous plane defined

by the distance and velocity vectors, one may also define the motion by the

following variables proposed by Struble (1960) and (1961) (cf. Fig. 2 for the

geometry).

angle between instantaneous orbital and equatorial planes
angle in the equatorial plane between some fixed direction,
say x pointing towards the vernal equinox, and the ascending
node

the radius

angle between the ascending node and the distance vector.




Struble (1960) has shown that equations (3.b4) transform to the following

fifth-order system after elimination of the time.*

18
(3-58) %T:—: > 3 X
525 - + Cos 12cos 0 [%% + ten i ::: % %%]
p sin"i sin &
. - cos>i cos 6[1! + tan i S50 aU]
(3.5b) a 39 - sin 0 30
de p2u2 sxn21 sin 8 + cos i cos 6[——-+ tan i <22 i-I'l]
sin 6 38y
. sini cosi cos ¢ [ + tan i 9058 3y
(3.5¢) a . s ie Sin 6 9y
d¢ s S s s U . cos ¢ aU,
pu sini 8in 6 + cos i cos B[ae + tan i sin 0 2y
[ "{-JE) 222‘ v w2
(3.5d) El-23-3(‘1—“)2+d dgat) | _cos®i
e 2 " u 'de do 2
e g .
dt (dt)

where p is the component ‘of angular momentum along the polar axis and is

defined by
S22 &
(3.5e) p=r sin ¢
= &
(305f) u"r

In equation (3.5d) %% and 8 are defined by

2 3.
N
(3.5g) g% - Du + Sos 12cos 8 [ +tan i zi $ ;Q]
cos i p sin"i sin 8 v

*  Note that Struble (1960) defines the node in the opposite sense.
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(3.5h) cos 6 = sin i sin ¢

If we now use (3.2) for U and retain terms up to 0(82) only, (3.5) simplify to

dap .
(3.6a) 7y 0
(3.60) ao _ - 2ru cos3i c0520 [;-2ccu2(7c0526 - 3)]
d¢ p2 sin2i + 2¢cu coshi cosee (1 - 2ceu2(7c0529 - 3)]
(3.6¢) di _ _ = 2¢eu sin®i cosdi cos ¢ cos 6 {1 - 205u2(7c0520 - 3)]
dé p2 sin2i + 2eu cosbi coage (1 - 2ceu2(7c0326 - 3)]
. g s
d2u 2 ,du 2 d¢ do (dt) - 22u5
(3.6d) —_—— (=) + = -
d¢2 u ‘dé¢ a¢ as 2 2
dt (dt) cos”i

.
-

1+ eu2(1 - 3cos29) + cczuh(35co§he - 30cosze + 3). uh
s 2
(dt)

di' 3 3 &:
vhere £ is given by (3.5g) with 5% 0.

According to (3.6a) p is a constant, a consequence of the independence of U

on y. Furthermore, equation (3.6b) for the node is uncoupled from (3.6c) and

(3.6d) and can hence be solved independently once u and i have been determined.

Making use of the identities (3.5g) and (3.5h) and retaining terms up to

o(ez) in (3.6c) and (3.6d) yields:

. 2
(3.7a) a . c-%-cos3i sin i sin 2¢ + 2¢° 35 cos3

. . . [k L, . 2
i sin i [ cos i sin“¢
dé

Y r P

2

3)

- 3cu + Tecu sinei sin2¢] sin 2¢ + O(¢




2 2 2
d i I
(3.7b) du, y=esd, b oo sin?e ¢ B (@) 0052i(1 - 3c0s?i)sin 20
2 2 2 2 ‘d¢
d¢ P by D
2 2
L, .
-2 (EE) cos i 31n2¢ + 2 coszi(l - 3sin2i sin2¢) -4 & cos6i sin2¢]
2 ‘3 2 n
P p p
2 cos i 3 2 3cosbi 2 2 2
+¢ [=- 4 -—ér—-u sin"¢ {-——5—— sin“¢ - 2uc(3 - 7 sin"i sin®¢)}
)% P
2 3
u_du . 2, 6, . 2 u” du . 2 2,
' 8 ;K>E; sin"i cos”i sin"¢ sin2¢ - 2¢ p2 e 3sin"1i cos”i

. b, ..
+ 7 sin i c0521 51n2¢ + 6coshi - 28coshi sin2i sin2¢} sin2¢

12¢ S (AT oghs sin%¢ (3 = 7sini sin2e)

2 'd
p ¢
AR ,-‘ : L + 2 gi‘gg 0% (3cos?i - 1) sinZ sin2e + 4 Y (3% 8, . b
. , S ph P cos i s°i - sin“¢ sin2¢ T 7 cos i sin ¢
uh 2 I L 2 2
+ ¢ =5 cos i {35sin i sin ¢ = 30sin”i sin“¢ + 3}

p

2
N EF cossi sin2¢ (1 - 3sin2i sin2¢) + 4 Ef cos6i sin2¢ {25 coshi sin2¢
P P 1Y

2cu (3 = 7sin2i sin2¢)}] + 0(53)

It is mentioned in passing that Struble (1961) chose a modified variable
analogous to ¢ in order to eliminate certain non-uniformities in the solution.
With the present approach this is unnecessary, since all the required scale

changes are automatically accounted for by the two-variable procedure.
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3,2 Outer expansion

The main problem to which we have previously referred is the solution of
equations {3.7a) and (3.7b). Since cosei/p2 is constant to order unity, we

see from {3.7b) that this problem reduces to solving the motion of an oscillator
with small non-linearities and a weak coupling because i is constant to order
unity. The somewhat lengthy nature of the perturbation terms in (3.7b) uoes

not alter the fact that the system in question is qualitatively analogous to

the model equation studied in 3ection 2. We therefore proceed as in Section 2.2

by assuming the following expansions for i and u:

(3.8a) i(3e) /2

Z in(¢y$;€)‘ﬂn
n=0

(3.8v) u(¢se) = | un(o,a;e)'en/2
n=0

where 5, analogous to the slow time variable, is defined by
(3.8¢c) 6 = €6

Substitution of (3.8) into (3.7) gives to order unity

aio
(3.9a) Fred 0
aeuo cos i
(3.9b) +u_=
2 2
26 ° p

whose general solution is

(3.108) i =i (43e)
2,
cos 10 . -
(3.100) u = —— {1+ e(¢;e) cos[¢ - w(é3e)]}

P




In (3.10b) the two "constants of integration" have been expressed in terms of

the conventional Keplerian elements,

eccentricity

1]
n

apse angle measured in the counterclockwise sense from the

€
(]

ascending node to perigee in the instantaneous orbital plane.

As before we assume io, e and w have the following expressions

(3a1) gy(Ee) = T a0
(3.11)  elise) = ] e, p(0)e
(3.11¢)  w(dse) = nzown,2<a)e“/2

in order to account for the homogeneous solutions of the higher order terms

(51/2)

in i and u., It is easy to see ithat since terms of O are absent in (3.7),

11/2 = ul/2 = 0, The following equations for i and uy can then be derived.
ail dioo 1 5
(3.12a) 5% - cos”i  sini sin2¢[1 - e, cos(¢o = w)]
3¢ P .
82u 2e  dw e
1 o o 2 o 6. 2
(3.12b) +4u = [~ ———cosi - cos i (1 - 5c08“i )] cos{¢ ~ w)
2 2 - 6
2 1 P % 00 P 00 00
‘de e
+ 25 coszi —2 sin(¢ - w) - ig cossi sinzi [cos24 + = cos(3¢ = w)]
00 % (o1 00 3
P a¢ P
cos i 2 2
00 1,1 2, o o _
+ -_;3__— (= >+ 5 cos 100)[1 * =t cos2(¢p = w)]
6. 2
cos loo 2, eo
+ ——;;g—— (3 = Tcos 100)[(1 + —E-)COSQO + eocos(3¢ -w)
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2
eo? € 2 8 €
e e cos(b¢ - 2uw) + - coslw] - =g cos ioo [1 - cos2¢ - 52 cos(38 - w))
P .
e cos i e e
- -%- 22 (1 - 3coszi°°)[- cos(3¢ - w) - 52 cos{lb¢ ~ 2uw) + 52 cos2u]
eo' coseioo 1
- — (1 - cos2(¢ - w) - cos2p + = cos(l¢ - 2w) + = cos2uw]
2 p6 2 2
In order that il and ul be boupded we must set
dioo
(3.13a) =0
a4
deo
(3.13v) —=0
d¢
dmo coshioo >
{3.13¢c) —=- m {1 = 5cos ioo) =S5,
d¢ 2p

Note the similarity of (3.13a) and (3.13c) to (2.22) and (2.23) establishing

the analogy between a and B of the model equation with i and w respectively

for the main problem

Thus, the elements to first order become

(3.1k)

i const.
foYe}

e const. J
o o

where w
(o] ]

Equations (3.12) can now be solved to give

is a constant depending upon the initial conditions.

(3.15a) i1 = ;;r cossioo sinioo {cos2¢ + eocos(¢ + w) + —%-cos(3¢ - w)]
6, 2
cos i 5 e, °
(3.15b) u, = 2p6 (= 1 + 3cos ig - T(l - Scos ioo)
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2 2
e e

(] 2. 1l . 2, [} 5.2 . 2
+ - - (= - —
< (1 - 3cos 100) cos2w (3 sin"i_ 3 +€e, sin 1°°)cosz¢
2
o 2, o 2.
A (1 - 9cos ioo) cos2(¢ = w) = 5 (5 = 1lcos 100) cos(3¢ - w)
2
eo 2
- (1 - 3cos ioo) coas(ld -~ 2w)]
To 0(53/2) all the forcing terms on the right-hand sides of the equations for

u3/2 must be removed for boundedness, giving

di de dw
(3.16) _‘3_]:./_% =0 _%L_Z_ =0 ._%-./3 = sliol/2
aé d¢ as
a’s,
5, = —>=,n=1, 2, ...
dai
00
. which implies that ) .
(3.17) i1/ = Jl/2 = constant &/ = constant Wy = Sljl/2° + Y1 /20

vhere wl/2° is a constant depending on the initial condition.

The requirement that i, and u, be bounded provides the following equations for

2
"

i 1

ol 1° and e

(3-185)
(3.18b) —=%s (i

+ 5 iol + Ao + A2 cos2w

(3.18¢) —== B, sin 2w




30

The solutions of (3.18) subject to the initial conditions

(3.19) w=w e =n. in= Jn

at t = are

C
= 2 -
(3.20a) iol Jl + 250 (cos2w - cos2uw)

B
2
(3.200) e, = . * 25, (cos2w - cos2uw)
d(ﬂl 1 2 C2 '
(3.20c) ;g— =381 ¥ 5,03, + 55: (cos2w - cos2w)] + A + A, cos2u

The non-uniformities of the outer solution near S° = 0 are exhibited above and
are a consequence of the non-validity of the expansions assumed in (3.8) near

the critical inclination.

3.3 Inner expansion

As shown in Section 2, the expansion procedure for inclinations close to the

eritical value should be of the form

(3.21a) u(éze) = } un/;w.}-;s)e“/a
n=0

(3.21Db) 1(¢3e) = } in/;(m?;c)en/z

n=0

where

(3.21¢) 7 =32 = M

# Henceforth all constants not defined in the text will be found in the
Appendix with no additional reference.




and we are interested in the case where

/%

(3.214) 8, = o) ¥ith §_ = 0(1)

Upon substitution of (3.21) into (3.7) we obtain the following equations for

the leading terms:

2 % 2, *
3 ug # cos'i
(3.22a) - tu, = S
3¢ P
*
aio
(3.22b) 50 = ©

* L -
(3.23a) i, =i (&3¢)
'~ *
* COS 1 - -
(3.23b) u = -—EyﬁL-(l + e*(o.e) cos{¢ - w (¢;¢)]
P

We also expand the elements of {he inner solution in the form:

(3.2&&) io“(;;E) i nZOiOn/2*(-¢-)en/2
(3.24p) e*(;;c) = z-en/2*($)en/2
n=0

— *—
{3.2h¢) w*(¢;€) ) © /o (¢)(»:n/2
n=0 ' °

1/2

Since the homogeneous solution to O{e ) is already accounted for by the

*
expansion of the elements, we find ul/2 = i

following equations for the terms of 0(g).

1/2 = 0 and can derive the

3



2 # ' #

9 u " ~
(3.25a) ; tu oS- lg cos6ioo* sin"ioo[cos2¢ + —%— cos(3¢ - w*)]
¢ P
. * *2 *2
cos i € *
+ 600 (--;— +%cos ioo )[l+—g—+ Z cos2(¢ - w )]
P
. %2
cos i » e » »
+ -——6—&3— (3 - Tcoszioo y[(1 + g Ycos2¢ + e, cos{3¢ - w )
P
*2 ®2
e » € » *
+ oh cos(h¢ - 2w ) + —E——cos&» ] - Eg cossioo [1 - cos2¢
p
* * 5. 0w
e " e cos i " M
- —;— cos(3¢ - w )] = = 3 2 (1- 3c08%i )~ cos(3¢ - w )
00
2p
* » *D

e, \ .) e, . e, g * *)
- cos(bo - 20 ) + 5 cos2w ] -a—pgcos ioo [1 - cos2(¢ - w

» »
. - cos2¢ + %cos(lw -2w ) + %— cos2u |

(3.25Vb) -a-i—i I cossi * sin i ) sin2¢{1 + e *cos(¢ - w*)]
¢ EY) plt 00 00 ¢ o)

There are no terms proportional to sin ¢ or cos ¢ in (3.25a) and no terms

vhich depend on % in (3.25b),s0 (3.25) can be solved directly to yield

»*
» * * ™ * e *
(3.264d) i 1= -l—h- cossioo sin ioo [cos2¢ + e cos(é + w ) + —g— cos(3¢ - w )]
2p
6, * *2
. cos i %« © *
(3.26b) W oe -1+ 3c08%1 - —— (1 - 5cos?i_ ")
2p .
. *0 . *0
[} 2, * * 1 .2, % 0
+ 5 (1 - 3cos i ) cos2w =~ (3 sin“i = - —3




#2
2 2 o . " *
.f % e,  sinTi ) cos2¢ + —%—— (1 - 9c0521oo ) cos2(¢ - w )

= *2
e e
- —‘13-2- (5 - 11cos2100*) cos(36 = w') - ;2 (1 - 3coszi°o') cos(bo - 2w )]

Since we are only interested in obtaining a solution correct to 0(e), we

only give the boundedness conditions for the higher order terms.

* *
R . .
equiring u 3/2 and i 3/2 to be bounded gives
* * *
ai_ o de, w _ *
(3.27a) — =0 (3.27v) — =0 (3.27c) — =5 +51i
daé d¢ da¢
and this implies
L J » L] »
(3.28) i, = constant = Jo e, = constant = "o
. . »
The boundedness of u, and 12 requires
»
diolz2 * bad
(3.29a) — = 02 sin 2w
d¢
#
del 5 . "
(3.291) ——L_ =B, sin2w
d¢
*
(3.29¢) dwl/z-ls(' yesi "t * 4 a"cos20"
-29¢ o 2 2ligrya ) * 81 + A, + Ay cos2u
*
and finally in order to make u5/2 and i5/2 bounded we must set
#*
ai
ol _ " » * o . *
(3.308) 3 = (C21 i * C22 e /2 ) sin 2w
R * L, =
de e cos i
i _ * * * * Q0 = 00 2, * . *
(3.30Dp) d; [321 101/2 + B22 el/2 - I So —pr(l - 3cos 100 )] sin 2w
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3.4 Solution of the inner equations

From equations (3.27c and (3.29a) we obtain

4 * c * 5 *
fol/2 _ Tp Sin W
* R )
dw S +8S
0 o

(3.31) '
’ 1*o1/2

If the initial conditiong are given as
#* * * * #*

»
(3.32) w =W 1on =, e, =N,

at t = 1, equation (3.31) has the solution

1/2
. * - -l_ - * -
ii/e = Sl [(xo - x, cos 2w ) s ]

(3.33)

which upon substitution into (3.27c) gives

*
duw . 1/2

° -
(3.34) = - (x, =, cos2w )

By use of equation (3.34) and equation (3.29b) we now find

« B - . 1/2
(3.35) el/2 2 5= (k= x, cOB2w ) +E

N o 1 1/2

< ac 1 * )
(3.36) i, = ;I (= C EI + <, Ll/21 (Ko - % cos2w 5 {c
C *
*
+ ie* B, ; cos2w + I
2
Equation (3.30b) can next be integrated to
- [ J—
1/2 S e S
# - * o * * o_ "o
(3.37) e, = (Ko - % cos2w ) {- EI B,y * 31/2922 -0 p“ (1
B * B *B *
TSV T T s> Wt 7t P
- 3cosTr )cos 1o - {—-—sl ——-—.Kl Jcos2w 1




The solution of the apsidal motion will be considered in Section 3.6.

3.2 Matching and compogite expansions

The problem of matching is essentially the same as the case discussed in
Section 2 for the model equation. It must be remembered that in the overlap
domain, the initial conditions are the same for both inner and outer expansions;
thus

(3.38) i =4 =3 =3, § =3, e =e, n =, W =w

One can then calculate the following relations between the constants appearing

in the inner and outer expansions:

L 1 2
(3.39a) A, =A -55,
. L
S cos i
* - 00 2,
(3.39b) A2 = A2 -3 T (1 - 3cos 100)
% 5 cos“i

- o) 00 2.
(3.39¢) B, =B, -7 e, -;E—___ (1 - 3cos 100)

{3.394) ¢, =¢,

*
The matching between e and e can easily be realizud by finding the outer

e ion of * . 1/2 * . L {mol
xpansion of e N ce . This is simply
B*
* 1/2 * * * 1/2 * * 2 *
b = - e 2
(3.40) e, *¢ /5 * cey n, t*te y/2 +en € 230 (cos2uw
L, =
cos i
-00

3/2)

* - 2,
- co82w ) - €S 1l - 3cos 100) + 0(e

Lp
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The last term of G(e) in equation (3.40) arises from tne outer expansion of

* * 1/2 *
T +
ee. . Thus, eo € el/2

1
. *
and the outer expansion of eel

almost contain every term in the outer expansion

is mostly of higher order.

By comparing equation (3.40) with the equation (3,20b), we note that in addition
to matching directly, the inner expansion contains the outer. It then follows
that the composite expansion for e which is uniformly valid to O(e) for all i

is

\ - L 1/2 * *
(3.41) e, = e, *e¢ €1/ + e,y

*
The matching between i and i proceeds in a similar way. The outer expansion

. ¥ 1/2, *
of 100 + € 1y/0 1
R
.o 1/2, * * 1/, @ v * 3/2.
€ = + ——— - 3
(3.42) io * i1/2 I, te Jl/2 € 280 (cosew cos2w) + Ole )
Compérison of equatijon (3.42) with equaetion (3.20a) shows that the inner
expansion again contains the outer with the additional result that the outer
*
expansion of iol is 0(53/2). Thus, the composite expansion for io is
* * 1/2 * *

.h N = 3 L/ . .

(3.43) ‘oc oo T8 o172 t ol
*
The above statements for e and i hold provided that w and w are matched,
this will be considered next.
From equations (3.13¢), (3.16), and (3.18b), we have
dw 1/2 i 2 . 3/2

.hh —_— = + Q + = <

(3.44) == S, t e T80, oel3 S,d1/p * 8o ALt A, cos2w] + 0(e”’' )

de




dw - ., * 1/2.,1 . * .
.h — + -
(3.45) 5 So ¥ S1igyyn *ECIG S, i) 8l + A
» »
+ A, cos2w ] + 0(e)
*
According to equation (3.42) the outer expansion of i contains i .., Use
ol/2 ol
of this result leads to the following outer expansion for 9%— :
de¢
dw* 1/2 * 1 2 *
(3.46) G So v &7 Spdye el )+ 8y A

+ A2“ cos2w] + 0(53/2)

Comparing equations (3.46) with (3.4L4) we note that they are matched in any
overlap domain S° = 0(e") with 0 < y < % because those terms not contained
in the outer expansion of dw*/d; have So as a factor (ef., Eq. 3.39) and are
obviously small in the overlap domain. The composite expansion for the motion

of the apse is therefore-

dw »
_ . /2 1., * o
(3.47) o So *Syigia * & LE8lig ) v 8y 4 A

+A2cos2mc] + 0(e)

1/2

uniformly to order € for all inclinations,

From the assumed forms for u and i it is easily seen that the uniformly valiu

expansions to O(e) for all incalinations for these variables are

Cos2ioc 1/2
(3.48a) u, = -—;;r——'[l + eccos(¢ - wc)] * e uy , toen)
. i/2, .
(3.48b) ip=i  +c¢ 1, * el
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where loc’ eC and w, are used instead of i e and w in ul/2' ul, 11/2 and il
in equations (3.48a) ana_(3.b8b) and w_ can be obtained by integrating equation

(3.47).

3.6 Apsidal notion

The dominant behavior of the apsidal motion is described by the leading term.

We have from (3.34)

-1/2
- - *
(3.49) d¢ =(k_ - x, + 2¢x_s8in“w ) dw + 0(61/2)
o] 1. 1
If we let
sine’ = v 2sinw cosw = dv* = 2{v(l - v)]l/2
dw
and consider only the leading term we obtain
- - v ae
(3.50) b-9,= | Ve
o [(= 8k )(g = Mele - 1)]

(3.51) A= (kg - E;)/le

#*
For the earth's potential the quantity Kl is positive near the critical
inclination. Thus the square root appearing in the above expression is real

only if

#*
(3.52) v-2x>o0, sincw > A

#* Because ¢ = U/7 for the earth's potential. It is interesting to note that
for Vinti's (1959) potential ¢ = 5/18 (cf. Shi (1963)) which implies kK, =0
for the motion at the critical inclination.




liow we have to distinguish the following three cases:

Case 1

(3.53) - K, <x_<x or 0 <A<l

In this case (3.50) becomes an elliptic integral of the first kind.

(3.54a) % - ;0 = (2v<!1)-l/2

r(xl,kl)

vwhere the amplitude Xy is

(3.54p) Xy = % tan-l ( L _? tangw* - 1]

and the modulus is

(3.5he) &y = (K, + <) /2012

*
Using elliptic functions ‘e may express w explicitly as

'3 _ 1/2
(6 - 0,)1}]

1 [‘1 - 1/2

* - o 2
(3.55) w = % tan {1+ tn [(2:1)

1 o
where the modulus of tn is kl.

[ ]
The interpretation of this result is that the perigee performs a penauium
» -
motion around /2 or 3/2mn with a maximum amplitude w max - ¥ sin lA. A aepends

on the initial conditions because after substituting the expression (A.27) for

%o we obtain

L L2 - * 2
(3.56) A = sin"w + (So + lel/2 ) /2vcl




case 2

(3.57) :; =x, or A=0
In this case we have
- - w¥ +1 . *
(3.58) v -0, =t ! di/e = =73 log 1+ slnw*
o (2xl) cos & (8&1) 1 - sinw

or after some manipulations

2o )MAF - 7))
(3.59) sine’ = - 152
. +_e¢(axl>”2($ -3)

»
This means that w approaches 0 or v asymptotically as ¢ goes to infinity.
This case represents the boundary between oscillatory and secular motion of

the perigee. The boundary depends on the initial conditions. We have

= einlut 4 (T * -
(3.60) A = sinw 4+ (So + 8.3 )/2»:l =0

1/2

which is possible only when the initial values

(3.61) wf =0 or =n
and

- »
(3.62) 5, + 3131/2 0

are assumed., This means that initially the apse has to coincide with the line
of the nodes, and the inclination is exactly critical at least to the order
kept in our calculations, because (3.62) is evidently the expansion of the

initial value of the small divisor.




Case 3
(3.63) Ko > %y or A <0

In this case we obtain
(3.6b8) ¥ -7, = (<, +x)”
where the modulus is

(3.640) K, =[x /K # ¢ }*2

and the amplitude is

(3.6b¢) Xp = tant {[(K, + /(X - zl)]l/etanw"}

The use of elliptic functions gives
(3.65) W = tan™t {[(E, - )/(%, + e )M 2al(E, + «)Y2F - T)D)

vhere the modulus of tn is k2'

The apse angle may assume any value in this case and the motion of the perigee

is secular. For large :;, k G becomes small and we may expand F(xz.ke). This

2
gives
2 2 .2
- 1/2,~ = - _1_ 2 1™ 3 h
(3.66) (e, + )77 %(0 = 9) (J.~~22 ky + S35k, * ) X,
2% i
1.2 4
- E-ke sinax2 - O(k2 )

* -
Since x, * w for large Ko (cf. (3.6Uc)) this shows that the motion of the
perigee is secular with small additional oscillations. In the previous

discussion of the behavior of the apsidal motion we have considered only the
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*
solution of Wy e A solution using all available information to 0(52)

must make use of the composite expansion as obtained in (3.47).

*
By substitution of i and i in (3.47), we obtain the following result

ol/2 ol

. . . . 1/2
vhich is uniformly valid to 0O(e )
(3.67) 322 = (1 + /2, Y(x_ - k. cos2 )l/2 + 51/2[ + cos2w )

* i € 835, 1 Yo € T B c
After integration we have
( - - fwc‘ dt;

3.68) ¢ - ¢ = >
°© 5 (14 el/agl)(no - % coszc)l/2 + el/e[go + 8, cos2t ]

The evaluation of this integral leads to elliptic functions and a highly

transcendental relation between w and ;.
c

3.7 Motion of the node

Equation (3.6b) for the node can be brought to the following form:

(3.69) %‘ﬁ- = [2—2- u cos3i sin%] - ee[l‘—é u?(3cu - Teu sin’i sin
P P
- 55 cosbi sin2¢)] cosBi sin2¢ + 0(53)
P

Applying the composite expansions for u and i and substituting the known

*
results we obtain

# Note that u and i are zero.

1/2 1/2




an 2 3. . 2 2, 2 3. . 2
P ef 3 Y, cos”i_ sin ¢] e { u; cos”i_ sin"g

(3.70) 5
P

6 2, < . . 2 L 2 . 2, . 2
5 uoilcos i,.8in i sin ¢ + E u [3cuo - 7cu051n 1,.5in7¢
I 4

i b2 3. .2 5/2
- p2 cos'i_ sin ¢] cos i .8in ¢} + O(e )

Since all quantities on the right-hand side of (3.70) are already xnown as
functions of ¢, the node could be found by straignhtforward integration.
However, for the sake of simplicity and a more systematic approach that
avoids the shifting of orders of magnitude due to integration of long-period

terms, we will also solve (3.70) by the two-variable expansion procedure.

We use the slow variable ; = 53/2¢ and ‘'assume the following expansion for the
node:

L1 = ,.n/f2
(3.71) Q= 17z ngonn/z(o.o.e)c

1/2

The factor e~ in front of the suamation in (3.71) is suggestied because the
leading term of the nodal velocity is of order ¢ at all inclinations, which

forces us to make the leading term of thHe node itself of order 5_1/2 to

insure that the derivatiwve with respect to ; be of order unity.

Using the same procedure as for the other variables we obtain the following

equations:

29,
(3.72a) 5;— =0
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which implies that

(3.721) 90 = Qo(¢;€)-

Again, we expand Qo in the form:
(;)en/d

(3.73) a(e3e) = |

Q
neo on/2

Since the rignt-hand side of equation (3.70) is 0(e), we obtain

anN a
1/2 1
«Th = . —
(3.74) ) o] and (3.75) 3 0

implying that

(3.76) Q

because the integration constants are already included in the expansion (3.73).

Collecting the terms of order ¢ we obtain

5

ofl N N cos’i
(3.77) _E%LQ = - ffz - —% u°c0531° Sin2¢ L —:?-- ___T:iﬂl {1+ e, cos(é - mc)
3% P ° 39 P .

e e
- cos2¢ - 52 cos(¢ - wc) - ;9 cos{3¢ - wc)]

5ioo/ph. After substituting

The terms depending on ¢ in (3.77) are 390/33 + cos
the expansion for Qo (the expansion for ioc has already been substituted in
(3.77)), we require for boundedness

18] cos i

(3.78) 2 = L —=
¢ P

The higher order terms in the expansion of Qo and ioc are hence shifted to

the next order. Integration of (3.78) gives




(3.79) Q= - h°3+L

where Lo is a constant depending on the initial conditions, The solution for
¢

f3/p 18 -
e
(3.80) 93/2 = - —%~cossioo[- % 8in2¢ + eosin(¢ - wc) - 52 sin(¢ + mc)

p
e

o .
- sin(3¢ - wc)]

In order to make 2, bounded, we must set

2
*
M2 oy s -

{3.81) =5 n cos i_sini = - cos i_sin i_[S

- 00 00 00 o0o'vo

¢ P P Sl
- 1/2
- (xo - % cos2mc) ]
or
(3.62 5 b, L - *
) Qoi/2 = - : €os 11,0810 loo[¢ -l L/

*
where Ll/2 is an integration constant and w 1is given by (3.55), (3.59) or

(3.65) depending on the values of :; and .

The terms of O(ez) depending on ¢ only are: QQO,/QE +a d2cos2wc
r'e

+ (S/2pu) cos i (4 - Scosei )i

*)2 - (s/ h)i “coshi sin i
oo oo’ "ol/2 Py oo *

00

*

implies, after substituting for iol/2

The boundedness requirement on 95/2

%
and iOl s that

EIn 1 _
(3.83) i =D + D (k= x cos?wc

30

T+ D, cosZmc
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The integration of (3.83) yields

_ W, D+ Dycos2g
(3.8b) Q  =Dg¢ + [ 77546 + L

ol 1 - .
o (xo - <lcos2£)

1

where Ll is an integration constant and the integral depends on the values of

:; and Kl' The evaluation of this integral leads to elliptic functions of

the first and second kind and will not be exhibited here,
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(A.1)

(A.2)

(a.3)

(A.4)

Adpendix
o - ¥ SeSainhansing

(Definition of Constants)

1 L 2
X = e

3

f(2.2 bs 2

2 2
+ 42 e “¢) cosi
2 o ) Lo0

186

2 L
e - + -
27278 % T %0 cos iy,

cos 1 -
00 ) 3 1 2.3
+ e (-3 = Zc-~e =2
2p8 o f 2 12 o 2
+ (-i +12 ¢ * 3 el -1e Ec) cos*i
3 3 "o o (e]e}
2.2, . 5.,2,21 b
+ (2 = ¢ e, > e, ) cos i ]
e
- cos’ cook -2
-3 cos ioo sin ioo i 3 12c 3 a

10 4o
+ (-§-+-l20 c -3 e,

+ (30 - 126 ¢ - 15 e,

2

2

<120 e 2c) cos?i
o 00

+ 126 e°2c) coshi

1
]

2 4 12 e

e}

(e]e]

]

o

2

[+
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cosai
0

(A.5) B2o __ep?_g[ -g-he-feS

e2c
o

opro

S 4 (- 1 + 12¢ + 4 ec’2 ~ 36 eoec) cosaioo

3

+(§--%lc‘-]ﬁ2e°2*%ice°2)cosh ]

i
00

(A.6) c = 1]-;--—8- cos9:l.oo sin 1 (- % + 3¢ + (g— - 21c) c:osai‘Oo ]

106 -~ 8 .3 17 - 2
(A.7) Cyy =% TB- cos 1 [ 5-2Tc - (Tz ~ 261e) cos 1o

L
+ (30 - 252¢) cos 1, ]

e

N I 9 1 5 : 2
(A.8) o 5 ;g cos”d  sin i [~ Z + 3c+ (2 - 21c) cos iool

8

* co8 1

(a.9) A =+ X1 -

23,9 . 25
2p sh*5c-1§e *g e °©

+ (?-Z- N S5he + ?BJ; *2 - %82 eo*ec) cosaioo*

e
o

+ (- g%z + -%l c - -i% e * + £ e°*2c) coshioo*]

o

8 »

* cos i 1 5 * 1 2

(A.10) +_—02 o2 c+ e J 15 %
Ay 20 T-2°¢to i

2
+(-%+Mc-%e°*

2
* (%‘2 - %l ¢+ 582 eo* - _3_-%2 eo*zc) coahim:]

2 .
+ L2 e *¥¢) cos®i *
) 00




(A.12)

(A.13)

(A.1k)

(A.15)

(A.26)

(A.17)

21

22

22

o * 1 3 1 *2 2 *2
+ 3 2 = 2
op8 ™ [ T "2¢-1T2% *2% ¢
N R * M
( 12¢ 3% 12 e " ¢) cos i,
2 21 Y x2 , 21 e ¥
(T?'- > C'Eeo +-§—e c) cos 100 ]
*
PP AL 2 %2 *2
+ = . - =
2p8 cos 100 sin 1o | 3 12¢ 3 e, * 12 e, ¢
(N Lo 2 _ | #2 7
- A2 Oc + 22 -
( 3 120¢ T % 120 e c) cos i
. 2 2
(75 - 126¢c - 15 eo* * 126 e c) cos ioo* ]
cosaioo* 1 3 . = 9 =
Bl ToEoThe the
Z. + *2 - - *2 2, ¥
( 3+.'L2c heo 36 e, c)c031c>o

25 21 15 «2, 6 2 *
(-Ki--é—c--hieo“ + 93 o *%) coshioo ]

2 o
e*2
1 o 9, » * 1 5 2. *
3 —;B—cos foo 8in 1 {—-6+3c+(§--21c) cos“i_ ]
2
1 %o 8 * 3 _ o7 - (22 _ 261c) cos?s *
ny p8 cos 00[2 c % - 20dc) cosi

L *
(30 - 252¢) cos'1 ']

*
e
1 o 9; * * 1, 5 2, *
2 p8 cos”d,, sin i, (- gttt (5 - 2le) cos oo
in
cos 4
____uoo (L-5 coseioo)
2p
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(A.25)

(A.26)

1

* . * 2, *
i sini (2 - 15 cos 1o )

_ 00 _. 2.
8, =+—% sin 1__ (2 = 15 cos 100)
2p
cosioo >
=2 - & = 53 i
52 p)* (6 - 83 cosiioo+90c051 )
‘C"‘"‘. *
= 2 =t 2
S, -_-812(- 2} (l-Scosio)]
- _ % 2 *
x, = (So.tsl‘jl/a) + k) cos 2w
R 12 2
1 =56 =*3 p12°°s 00
1 5 2, *
X [-3+3c+(2 - 21c) cosioo]
B*
* 2 = *
Eife = Myz "Tc'l"(so*sl"l/z)
- * -
B - nt.o0di2li Co g %, g
1 1 N L 2l 1/2
e * 3
o o 2, #* kL
"_E—;E(l'3°°Sioo)c°S
* *
B »
+.]_'[B‘>-l +22_p* ]cos 2w
2 Sl <y
I *l[C*§°+C*E](§+ *s.)
1 " ot C 5 T fue RV
C. ¥* »*
1 * 22 *
*557 0 Cpy * ¥ By Jeos 2w
1 2
2
- ¥*
* (8 +s.3 )
'A = gin w +__°_—l_l&-
2K




(A.27)

(A.28)

(a.29)

(a.30)

(A.31)

(A.32)

(A.33)

(a.34)

J

00

2

oo

- T 2
= 3 (x +So)+°lIl+A
2S
1
S -
= « 2. § L -_¢c 3 3B,
TTT2% 7t €215 * 20811 /5 ]
I 1
1
) C
_ 1.2 o2 _ *
- A2-§l ) !\l+c2l+c -02]
) 2
1
S
cos” i
_ ©l_9.,3.2_21_2
= 3 '372°tEe% T ¢
P
_ - .. 5
+(-%+%}-c-2ﬁ-e02+9§eoec)cos"i
9
cos”i
2 00 2 2 5_.2_1
—pa-—o [-3+6c+(E 2c)cos
3
cos™1i : _
= -4 -2 =2 (h-Scosei‘)(Z +sg)
o D 2 {e]s] o o
Slp
I

cos3i° o 3 cos 1_ sin R
+5 21k -5 cos1 ) =2 4+
S oo’ S CP
P Sy ,
+ 022 El/2) ]
3 -
cos- 1 C
5 00 22
- 62 -5 — [cos 1,810 1,0 (021 + o B,
Slp 2

- (4 -5 coeeioo) Cy ]

(- ¢

o

21 S
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